Ionization Energy

Definition of IE: the minimum amount of energy required to remove an electron form an atom (in kJ/mol) in its gaseous state.

Ex. X (g)  X+  (g) +   1e    IE1

Ex. X+  (g)  X+2 (g)  + 1e    IE2

Ex. X+2  (g)  X+3 (g)  + 1e    IE3

Sample Ionization Energies Table

IonTable

General Pattern in the Table: for each electron lost, the subsequent IE ↑

Thus IE1 < IE2 < IE3

Alkali Metal (Group I) Comparison: Li, Na, and K all want to lose 1 electron, so the 1st IE values are not too high, but increase dramatically when any further electrons are to be removed (2nd IE, 3rd IE).

Within the group, an ↑ n value will have a ↓IE comparatively because Zeff is ↓.

Alkali Metals (Group I) vs Alkaline Earth (Group II) Metals: 1st IE for both groups is comparable; however, the 2nd IE increase is much greater for Group I than Group II because Alkali metals only want to lose 1 electron and will resist any further loses by having ↑IE. Alkaline earth metals want to lose 2 electrons, so they do not resist the second electron loss, hence the lower 2nd IE value compared to that of alkali metals.

Ion2

Trend: As you proceed from:

LEFT  RIGHT   IE ↑

BOTTOM  TOP  IE ↑

Ion3

Why?

Right-most elements are nonmetals and tend to gain electrons so they’re not too keen on losing electrons and will resist the removal of any electrons. Therefore, in order to remove an electron from such an atom, a lot of energy must be expended, hence a lot of ionization energy.

For metals, on the left-most section, who want to lose electrons, not as much energy is required, as they are willing to give up electrons readily, so they have ↓ IE values.

Top-most elements are closer to nucleus ( ↓ n value) and have ↑ Zeff values (electrons held tightly by the nucleus and difficult to remove) and ↑ IE.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s